Development and Stability Analysis of Carpal Kinematic Metrics from 4D Magnetic Resonance Imaging
Abstract
Introduction: Wrist instability remains a common health concern. The potential of dynamic Magnetic Resonance Imaging (MRI) in assessing carpal dynamics associated with this condition is a field of ongoing research. This study contributes to this line of inquiry by developing MRI-derived carpal kinematic metrics and investigating their stability. Methods: A previously described 4D MRI approach for tracking the movements of carpal bones in the wrist was deployed in this study. A panel of 120 metrics characterizing radial/ulnar deviation and flexion extension movements was constructed by fitting low order polynomial models of scaphoid and lunate degrees of freedom against that of the capitate. Intraclass Correlation Coefficients were utilized to analyze intra- and inter-subject stability within a mixed cohort of 49 subjects, including 20 with and 29 without a history of wrist injury. Results: A comparable degree of stability across the two different wrist movements. Out of the total 120 derived metrics, distinct subsets demonstrated high stability within each type of movement. Among asymptomatic subjects, 16 out of 17 metrics with high intra-subject stability also showed high inter-subject stability. Interestingly, some quadratic term metrics, although relatively unstable within asymptomatic subjects, showed increased stability within this group, hinting at potential differentiation in their behavior across different cohorts. Conclusion: This study showed the developing potential of dynamic MRI to characterize complex carpal bone dynamics. Stability analyses of the derived kinematic metrics showed encouraging differences between cohorts with and without a history of wrist injury. Although these broad metric stability variations highlight the potential utility of this approach for analysis of carpal instability, further studies are necessary to better characterize these observations.
- Publication:
-
arXiv e-prints
- Pub Date:
- May 2023
- DOI:
- arXiv:
- arXiv:2305.16423
- Bibcode:
- 2023arXiv230516423S
- Keywords:
-
- Physics - Medical Physics
- E-Print:
- 15 pages, 10 figure, 1 table