Test like you Train in Implicit Deep Learning
Abstract
Implicit deep learning has recently gained popularity with applications ranging from meta-learning to Deep Equilibrium Networks (DEQs). In its general formulation, it relies on expressing some components of deep learning pipelines implicitly, typically via a root equation called the inner problem. In practice, the solution of the inner problem is approximated during training with an iterative procedure, usually with a fixed number of inner iterations. During inference, the inner problem needs to be solved with new data. A popular belief is that increasing the number of inner iterations compared to the one used during training yields better performance. In this paper, we question such an assumption and provide a detailed theoretical analysis in a simple setting. We demonstrate that overparametrization plays a key role: increasing the number of iterations at test time cannot improve performance for overparametrized networks. We validate our theory on an array of implicit deep-learning problems. DEQs, which are typically overparametrized, do not benefit from increasing the number of iterations at inference while meta-learning, which is typically not overparametrized, benefits from it.
- Publication:
-
arXiv e-prints
- Pub Date:
- May 2023
- DOI:
- arXiv:
- arXiv:2305.15042
- Bibcode:
- 2023arXiv230515042R
- Keywords:
-
- Computer Science - Machine Learning;
- Statistics - Machine Learning