On the Hausdorff dimension of circular Furstenberg sets
Abstract
For $0 \leq s \leq 1$ and $0 \leq t \leq 3$, a set $F \subset \mathbb{R}^{2}$ is called a circular $(s,t)$-Furstenberg set if there exists a family of circles $\mathcal{S}$ of Hausdorff dimension $\dim_{\mathrm{H}} \mathcal{S} \geq t$ such that $$\dim_{\mathrm{H}} (F \cap S) \geq s, \qquad S \in \mathcal{S}.$$ We prove that if $0 \leq t \leq s \leq 1$, then every circular $(s,t)$-Furstenberg set $F \subset \mathbb{R}^{2}$ has Hausdorff dimension $\dim_{\mathrm{H}} F \geq s + t$. The case $s = 1$ follows from earlier work of Wolff on circular Kakeya sets.
- Publication:
-
arXiv e-prints
- Pub Date:
- May 2023
- DOI:
- arXiv:
- arXiv:2305.11587
- Bibcode:
- 2023arXiv230511587F
- Keywords:
-
- Mathematics - Classical Analysis and ODEs;
- Mathematics - Metric Geometry;
- 28A80;
- 28A78
- E-Print:
- 73 pages, 5 figures