SPP-CNN: An Efficient Framework for Network Robustness Prediction
Abstract
This paper addresses the robustness of a network to sustain its connectivity and controllability against malicious attacks. This kind of network robustness is typically measured by the time-consuming attack simulation, which returns a sequence of values that record the remaining connectivity and controllability after a sequence of node- or edge-removal attacks. For improvement, this paper develops an efficient framework for network robustness prediction, the spatial pyramid pooling convolutional neural network (SPP-CNN). The new framework installs a spatial pyramid pooling layer between the convolutional and fully-connected layers, overcoming the common mismatch issue in the CNN-based prediction approaches and extending its generalizability. Extensive experiments are carried out by comparing SPP-CNN with three state-of-the-art robustness predictors, namely a CNN-based and two graph neural networks-based frameworks. Synthetic and real-world networks, both directed and undirected, are investigated. Experimental results demonstrate that the proposed SPP-CNN achieves better prediction performances and better generalizability to unknown datasets, with significantly lower time-consumption, than its counterparts.
- Publication:
-
arXiv e-prints
- Pub Date:
- May 2023
- DOI:
- arXiv:
- arXiv:2305.07872
- Bibcode:
- 2023arXiv230507872W
- Keywords:
-
- Computer Science - Machine Learning;
- Electrical Engineering and Systems Science - Systems and Control
- E-Print:
- 10 pages, 7 figures, 14 pages Supplementary Information