An Improved Yaw Control Algorithm for Wind Turbines via Reinforcement Learning
Abstract
Yaw misalignment, measured as the difference between the wind direction and the nacelle position of a wind turbine, has consequences on the power output, the safety and the lifetime of the turbine and its wind park as a whole. We use reinforcement learning to develop a yaw control agent to minimise yaw misalignment and optimally reallocate yaw resources, prioritising high-speed segments, while keeping yaw usage low. To achieve this, we carefully crafted and tested the reward metric to trade-off yaw usage versus yaw alignment (as proportional to power production), and created a novel simulator (environment) based on real-world wind logs obtained from a REpower MM82 2MW turbine. The resulting algorithm decreased the yaw misalignment by 5.5% and 11.2% on two simulations of 2.7 hours each, compared to the conventional active yaw control algorithm. The average net energy gain obtained was 0.31% and 0.33% respectively, compared to the traditional yaw control algorithm. On a single 2MW turbine, this amounts to a 1.5k-2.5k euros annual gain, which sums up to very significant profits over an entire wind park.
- Publication:
-
arXiv e-prints
- Pub Date:
- May 2023
- DOI:
- arXiv:
- arXiv:2305.01299
- Bibcode:
- 2023arXiv230501299P
- Keywords:
-
- Computer Science - Machine Learning;
- Electrical Engineering and Systems Science - Systems and Control
- E-Print:
- Amini, MR., Canu, S., Fischer, A., Guns, T., Kralj Novak, P., Tsoumakas, G. (eds) Machine Learning and Knowledge Discovery in Databases. ECML PKDD 2022. Lecture Notes in Computer Science(), vol 13717. Springer, Cham