A Conjugate System for Twisted Araki-Woods von Neumann Algebras of finite dimensional spaces
Abstract
We compute the conjugate system of twisted Araki-Woods von Neumann algebras $ \mathcal{L}_T(H) $ for a compatible braided crossing symmetric twist $T$ on a finite dimensional Hilbert space $ \mathcal{H} $ with norm $ \|T\| <1$. This implies that those algebras have finite non-microstates free Fisher information and therefore are always factors of type $\text{III}_\lambda$ ($0<\lambda\leq 1$) or $ \text{II}_1 $. Moreover, using the nontracial free monotone transport, we show that $ \mathcal{L}_T(H) $ is isomorphic to the free Araki-Woods algebra $ \mathcal{L}_0(H) $ when $ \|T\|=q $ is small enough.
- Publication:
-
arXiv e-prints
- Pub Date:
- April 2023
- DOI:
- arXiv:
- arXiv:2304.13856
- Bibcode:
- 2023arXiv230413856Y
- Keywords:
-
- Mathematics - Operator Algebras;
- Mathematics - Functional Analysis
- E-Print:
- v2: 33 pages, fixed typos. Added infinite dimension cases in Example 2.12