On the triple junction problem with general surface tension coefficients
Abstract
We investigate the Allen-Cahn system \begin{equation*} \Delta u-W_u(u)=0,\quad u:\mathbb{R}^2\rightarrow\mathbb{R}^2, \end{equation*} where $W\in C^2(\mathbb{R}^2,[0,+\infty))$ is a potential with three global minima. We establish the existence of an entire solution $u$ which possesses a triple junction structure. The main strategy is to study the global minimizer $u_\varepsilon$ of the variational problem \begin{equation*} \min\int_{B_1} \left( \frac{\varepsilon}{2}|\nabla u|^2+\frac{1}{\varepsilon}W(u) \right)\,dz,\ \ u=g_\varepsilon \text{ on }\partial B_1. \end{equation*} The point of departure is an energy lower bound that plays a crucial role in estimating the location and size of the diffuse interface. We do not impose any symmetry hypotheses on the solution or on the potential.
- Publication:
-
arXiv e-prints
- Pub Date:
- April 2023
- DOI:
- arXiv:
- arXiv:2304.13106
- Bibcode:
- 2023arXiv230413106A
- Keywords:
-
- Mathematics - Analysis of PDEs;
- 35J47;
- 35R35;
- 35J50