A new version of the Gelfand-Hille theorem
Abstract
Let $\mathcal{X}$ be a complex Banach space and $A\in\mathcal{L}(\mathcal{X})$ with $\sigma(A)=\{1\}$. We prove that for a vector $x\in \mathcal{X}$, if $\|(A^{k}+A^{-k})x\|=O(k^N)$ as $k \rightarrow +\infty$ for some positive integer $N$, then $(A-\mathbf{I})^{N+1}x=0$ when $N$ is even and $(A-\mathbf{I})^{N+2}x=0$ when $N$ is odd. This could be seemed as a new version of the Gelfand-Hille theorem. As a corollary, we also obtain that for a quasinilpotent operator $Q\in\mathcal{L}(\mathcal{X})$ and a vector $x\in\mathcal{X}$, if $\|\cos(kQ)x\|=O(k^N)$ as $k \rightarrow +\infty$ for some positive integer $N$, then $Q^{N+1}x=0$ when $N$ is even and $Q^{N+2}x=0$ when $N$ is odd.
- Publication:
-
arXiv e-prints
- Pub Date:
- April 2023
- DOI:
- arXiv:
- arXiv:2304.12663
- Bibcode:
- 2023arXiv230412663F
- Keywords:
-
- Mathematics - Functional Analysis;
- Primary 47B10;
- 47B15;
- 47B40;
- Secondary 47A10;
- 47D03
- E-Print:
- 7 pages