Learning Task-Specific Strategies for Accelerated MRI
Abstract
Compressed sensing magnetic resonance imaging (CS-MRI) seeks to recover visual information from subsampled measurements for diagnostic tasks. Traditional CS-MRI methods often separately address measurement subsampling, image reconstruction, and task prediction, resulting in a suboptimal end-to-end performance. In this work, we propose TACKLE as a unified co-design framework for jointly optimizing subsampling, reconstruction, and prediction strategies for the performance on downstream tasks. The naïve approach of simply appending a task prediction module and training with a task-specific loss leads to suboptimal downstream performance. Instead, we develop a training procedure where a backbone architecture is first trained for a generic pre-training task (image reconstruction in our case), and then fine-tuned for different downstream tasks with a prediction head. Experimental results on multiple public MRI datasets show that TACKLE achieves an improved performance on various tasks over traditional CS-MRI methods. We also demonstrate that TACKLE is robust to distribution shifts by showing that it generalizes to a new dataset we experimentally collected using different acquisition setups from the training data. Without additional fine-tuning, TACKLE leads to both numerical and visual improvements compared to existing baselines. We have further implemented a learned 4$\times$-accelerated sequence on a Siemens 3T MRI Skyra scanner. Compared to the fully-sampling scan that takes 335 seconds, our optimized sequence only takes 84 seconds, achieving a four-fold time reduction as desired, while maintaining high performance.
- Publication:
-
arXiv e-prints
- Pub Date:
- April 2023
- DOI:
- 10.48550/arXiv.2304.12507
- arXiv:
- arXiv:2304.12507
- Bibcode:
- 2023arXiv230412507W
- Keywords:
-
- Electrical Engineering and Systems Science - Image and Video Processing;
- Computer Science - Computer Vision and Pattern Recognition