On sumsets involving $k$th powers of finite fields
Abstract
In this paper, we study some topics concerning the additive decompositions of the set $D_k$ of all $k$th power residues modulo a prime $p$. For example, given a positive integer $k\ge2$, we prove that $$\lim_{x\rightarrow+\infty}\frac{B(x)}{\pi(x)}=0,$$ where $\pi(x)$ is the number of primes $p\le x$ and $B(x)$ denotes the cardinality of the set $$\{p\le x: p\equiv1\pmod k; D_k\ \text{has a non-trivial 2-additive decomposition}\}.$$
- Publication:
-
arXiv e-prints
- Pub Date:
- April 2023
- DOI:
- arXiv:
- arXiv:2304.11789
- Bibcode:
- 2023arXiv230411789W
- Keywords:
-
- Mathematics - Number Theory