Topological edge states in nanoparticle chains: Isolating radiative heat flux
Abstract
Recent advancements in the field of topological band theory have significantly contributed to our understanding of intriguing topological phenomena observed in various classical and quantum systems, encompassing both wave and dissipative systems. In this study, we employ the notion of band theory to establish a profound connection between the spatiotemporal evolution of temperatures and the underlying topological properties of radiative systems. These systems involve the exchange of energy through radiation among a collection of particles. By utilizing the eigenstates of the response matrix of the system, we establish a robust framework for the examination of topological properties in radiative systems, considering both symmetric and asymmetric response matrices. Our formalism is specifically applied to investigate the topological phase transition in a one-dimensional chain composed of an even number of spherical nanoparticles. We provide compelling evidence for the existence and robustness of topological edge states in systems characterized by an asymmetric response matrix. Moreover, we demonstrate that by manipulating the arrangement and volume of particles, it is possible to control the system's structure and achieve desired topological features. Interestingly, we showed that the radiative heat transfer can be controlled and prevented by topological insulation. Additionally, we conduct an analysis of the temperature dynamics and the associated relaxation process in the proposed system. Our research findings demonstrate that the interplay between bulk states and localized states is pivotal in the emergence of distinct eigenstates and provides significant insights into the spatiotemporal dynamics of temperature and the process of thermalization within a system. This interplay holds the potential to be leveraged for the development of structures, facilitating efficient heat transfer even in the presence of perturbation. Consequently, it enables precise experimental measurements of heat transfer and serves as a platform for the exploration of thermal topology, offering new avenues for scientific inquiry in this field.
- Publication:
-
Physical Review B
- Pub Date:
- August 2023
- DOI:
- 10.1103/PhysRevB.108.064307
- arXiv:
- arXiv:2304.11395
- Bibcode:
- 2023PhRvB.108f4307N
- Keywords:
-
- Physics - Optics;
- Condensed Matter - Mesoscale and Nanoscale Physics