Three-body recombination in physical chemistry
Abstract
Three-body recombination, or ternary association, is a termolecular reaction in which three particles collide, forming a bound state between two, whereas the third escapes freely. Three-body recombination reactions play a significant role in many systems relevant to physics and chemistry. In particular, they are relevant in cold and ultracold chemistry, quantum gases, astrochemistry, atmospheric physics, physical chemistry, and plasma physics. As a result, three-body recombination has been the subject of extensive work during the last 50 years, although primarily from an experimental perspective. Indeed, a general theory for three-body recombination remains elusive despite the available experimental information. Our group recently developed a direct approach based on classical trajectory calculations in hyperspherical coordinates for three-body recombination to amend this situation, leading to a first principle explanation of ion-atom-atom and atom-atom-atom three-body recombination processes. This review aims to summarize our findings on three-body recombination reactions and identify the remaining challenges in the field.
- Publication:
-
arXiv e-prints
- Pub Date:
- April 2023
- DOI:
- 10.48550/arXiv.2304.05272
- arXiv:
- arXiv:2304.05272
- Bibcode:
- 2023arXiv230405272M
- Keywords:
-
- Physics - Chemical Physics;
- Physics - Atomic Physics
- E-Print:
- 33 pages, 14 figures and 5 tables. Submitted to International Reviews in Physical Chemistry