Continuous eigenfunctions of the transfer operator for Dyson models
Abstract
In this article we address a well-known problem at the intersection of ergodic theory and statistical mechanics. We prove that there exists a continuous eigenfunction for the transfer operator corresponding to pair potentials that satisfy a square summability condition, when the inverse temperature is subcritical. As a corollary we obtain a continuous eigenfunction for the classical Dyson model, with interactions $\J(k)=\beta \, k^{-\alpha}$, $k\ge1$, in the whole subcritical regime $\beta<\beta_c$ for which the parameter $\alpha$ is greater than $3/2$.
- Publication:
-
arXiv e-prints
- Pub Date:
- April 2023
- DOI:
- 10.48550/arXiv.2304.04202
- arXiv:
- arXiv:2304.04202
- Bibcode:
- 2023arXiv230404202J
- Keywords:
-
- Mathematics - Dynamical Systems;
- Mathematical Physics;
- 37D35;
- 37A60;
- 82B20;
- 82B26;
- 82C27