Online Algorithms for Hierarchical Inference in Deep Learning applications at the Edge
Abstract
We consider a resource-constrained Edge Device (ED), such as an IoT sensor or a microcontroller unit, embedded with a small-size ML model (S-ML) for a generic classification application and an Edge Server (ES) that hosts a large-size ML model (L-ML). Since the inference accuracy of S-ML is lower than that of the L-ML, offloading all the data samples to the ES results in high inference accuracy, but it defeats the purpose of embedding S-ML on the ED and deprives the benefits of reduced latency, bandwidth savings, and energy efficiency of doing local inference. In order to get the best out of both worlds, i.e., the benefits of doing inference on the ED and the benefits of doing inference on ES, we explore the idea of Hierarchical Inference (HI), wherein S-ML inference is only accepted when it is correct, otherwise the data sample is offloaded for L-ML inference. However, the ideal implementation of HI is infeasible as the correctness of the S-ML inference is not known to the ED. We propose an online meta-learning framework that the ED can use to predict the correctness of the S-ML inference. In particular, we propose to use the maximum softmax value output by S-ML for a data sample and decide whether to offload it or not. The resulting online learning problem turns out to be a Prediction with Expert Advice (PEA) problem with continuous expert space. We propose two different algorithms and prove sublinear regret bounds for them without any assumption on the smoothness of the loss function. We evaluate and benchmark the performance of the proposed algorithms for image classification application using four datasets, namely, Imagenette and Imagewoof, MNIST, and CIFAR-10.
- Publication:
-
arXiv e-prints
- Pub Date:
- April 2023
- DOI:
- 10.48550/arXiv.2304.00891
- arXiv:
- arXiv:2304.00891
- Bibcode:
- 2023arXiv230400891N
- Keywords:
-
- Computer Science - Machine Learning;
- Computer Science - Computer Vision and Pattern Recognition
- E-Print:
- The original version was submitted to a journal and was later revised. The updated version was accepted in a journal and will be published soon. The 'Journal reference' will be updated as and when the information is available