Random Young towers and quenched decay of correlations for predominantly expanding multimodal circle maps
Abstract
In this paper, we study the random dynamical system $f_\omega^n$ generated by a family of maps $\{f_{\omega_0}: \mathbb{S}^1 \to \mathbb{S}^1\}_{\omega_0 \in [-\varepsilon,\varepsilon]},$ $f_{\omega_0}(x) = \alpha \xi (x+\omega_0) +a\ (\mathrm{mod }\ 1),$ where $\xi: \mathbb S^1 \to \mathbb R$ is a non-degenerated map, $a\in [0,1)$, and $\alpha,\varepsilon>0$. Fixing a constant $c\in (0,1)$, we show that for $\alpha$ sufficiently large and for $\varepsilon > \alpha^{-1+c},$ the random dynamical system $f_\omega^n$ presents a random Young tower structure and quenched decay of correlations.
- Publication:
-
arXiv e-prints
- Pub Date:
- March 2023
- DOI:
- arXiv:
- arXiv:2303.16345
- Bibcode:
- 2023arXiv230316345C
- Keywords:
-
- Mathematics - Dynamical Systems;
- 37H12;
- 37H15;
- 37A25
- E-Print:
- 38 pages, 0 figures