Models of Abelian varieties over valued fields, using model theory
Abstract
Given an elliptic curve $E$ over a perfect defectless henselian valued field $(F,\mathrm{val})$ with perfect residue field $\textbf{k}_F$ and valuation ring $\mathcal{O}_F$, there exists an integral separated smooth group scheme $\mathcal{E}$ over $\mathcal{O}_F$ with $\mathcal{E}\times_{\text{Spec } \mathcal{O}_F}\text{Spec } F\cong E$. If $\text{char}(\textbf{k}_F)\neq 2,3$ then one can be found over $\mathcal{O}_{F^{alg}}$ such that the definable group $\mathcal{E}(\mathcal{O})$ is the maximal generically stable subgroup of $E$. We also give some partial results on general Abelian varieties over $F$. The construction of $\mathcal{E}$ is by means of generating a birational group law over $\mathcal{O}_F$ by the aid of a generically stable generic type of a definable subgroup of $E$.
- Publication:
-
arXiv e-prints
- Pub Date:
- March 2023
- DOI:
- arXiv:
- arXiv:2303.15829
- Bibcode:
- 2023arXiv230315829H
- Keywords:
-
- Mathematics - Logic;
- Mathematics - Algebraic Geometry