Logarithmic bounds for isoperimetry and slices of convex sets
Abstract
We prove that the Bourgain slicing conjecture and the Kannan-Lovász-Simonovits (KLS) isoperimetric conjecture in $\mathbb{R}^n$ hold true up to a factor of $\sqrt{\log n}$. A new ingredient used in the proof is an improved log-concave Lichnerowicz inequality.
- Publication:
-
arXiv e-prints
- Pub Date:
- March 2023
- DOI:
- 10.48550/arXiv.2303.14938
- arXiv:
- arXiv:2303.14938
- Bibcode:
- 2023arXiv230314938K
- Keywords:
-
- Mathematics - Functional Analysis;
- Mathematics - Metric Geometry;
- Mathematics - Probability
- E-Print:
- 17 pages. Ars Inveniendi Analytica publishes this version of the paper