On the KMS states for the Bernoulli shift
Abstract
Let $\Omega:=\{0,1\}^{\mathbb{Z}}$ be the Cantor space, and let $\tau:\Omega \to \Omega$ be the Bernoulli shift. For the flow on the crossed product $C(\Omega)\rtimes_\tau \mathbb{Z}$ determined by a potential that depends on only one coordinate, we show that for every $\beta \neq 0$, there is an extremal $\beta$-KMS state on $C(\Omega)\rtimes_\tau \mathbb{Z}$ of type $II_\infty$. Also, when the potential takes values that are rationally dependent, we determine the values of $\lambda \in (0,1)$ for which there is a an extremal $\beta$-KMS state of type $III_\lambda$.
- Publication:
-
arXiv e-prints
- Pub Date:
- March 2023
- DOI:
- arXiv:
- arXiv:2303.12476
- Bibcode:
- 2023arXiv230312476S
- Keywords:
-
- Mathematics - Operator Algebras;
- Mathematics - Dynamical Systems