An exponential improvement for diagonal Ramsey
Abstract
The Ramsey number $R(k)$ is the minimum $n \in \mathbb{N}$ such that every red-blue colouring of the edges of the complete graph $K_n$ on $n$ vertices contains a monochromatic copy of $K_k$. We prove that \[ R(k) \leqslant (4 - \varepsilon)^k \] for some constant $\varepsilon > 0$. This is the first exponential improvement over the upper bound of Erdős and Szekeres, proved in 1935.
- Publication:
-
arXiv e-prints
- Pub Date:
- March 2023
- DOI:
- 10.48550/arXiv.2303.09521
- arXiv:
- arXiv:2303.09521
- Bibcode:
- 2023arXiv230309521C
- Keywords:
-
- Mathematics - Combinatorics
- E-Print:
- 57 pages, 8 figures