Visual Contact Pressure Estimation for Grippers in the Wild
Abstract
Sensing contact pressure applied by a gripper can benefit autonomous and teleoperated robotic manipulation, but adding tactile sensors to a gripper's surface can be difficult or impractical. If a gripper visibly deforms, contact pressure can be visually estimated using images from an external camera that observes the gripper. While researchers have demonstrated this capability in controlled laboratory settings, prior work has not addressed challenges associated with visual pressure estimation in the wild, where lighting, surfaces, and other factors vary widely. We present a model and associated methods that enable visual pressure estimation under widely varying conditions. Our model, Visual Pressure Estimation for Robots (ViPER), takes an image from an eye-in-hand camera as input and outputs an image representing the pressure applied by a soft gripper. Our key insight is that force/torque sensing can be used as a weak label to efficiently collect training data in settings where pressure measurements would be difficult to obtain. When trained on this weakly labeled data combined with fully labeled data that includes pressure measurements, ViPER outperforms prior methods, enables precision manipulation in cluttered settings, and provides accurate estimates for unseen conditions relevant to in-home use.
- Publication:
-
arXiv e-prints
- Pub Date:
- March 2023
- DOI:
- 10.48550/arXiv.2303.07344
- arXiv:
- arXiv:2303.07344
- Bibcode:
- 2023arXiv230307344C
- Keywords:
-
- Computer Science - Robotics
- E-Print:
- Accepted for presentation at the 2023 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2023)