Tighter Lower Bounds for Shuffling SGD: Random Permutations and Beyond
Abstract
We study convergence lower bounds of without-replacement stochastic gradient descent (SGD) for solving smooth (strongly-)convex finite-sum minimization problems. Unlike most existing results focusing on final iterate lower bounds in terms of the number of components $n$ and the number of epochs $K$, we seek bounds for arbitrary weighted average iterates that are tight in all factors including the condition number $\kappa$. For SGD with Random Reshuffling, we present lower bounds that have tighter $\kappa$ dependencies than existing bounds. Our results are the first to perfectly close the gap between lower and upper bounds for weighted average iterates in both strongly-convex and convex cases. We also prove weighted average iterate lower bounds for arbitrary permutation-based SGD, which apply to all variants that carefully choose the best permutation. Our bounds improve the existing bounds in factors of $n$ and $\kappa$ and thereby match the upper bounds shown for a recently proposed algorithm called GraB.
- Publication:
-
arXiv e-prints
- Pub Date:
- March 2023
- DOI:
- arXiv:
- arXiv:2303.07160
- Bibcode:
- 2023arXiv230307160C
- Keywords:
-
- Computer Science - Machine Learning;
- Mathematics - Optimization and Control;
- Statistics - Machine Learning
- E-Print:
- 58 pages