Dynamical Bose-Hubbard model for entanglement generation and storing
Abstract
This work presents a theoretical study of a protocol for dynamical generation and storage of the durable, highly entangled Greenberger-Horne-Zeilinger (GHZ) state in a system composed of bosonic atoms loaded into a one-dimensional optical lattice potential. A method of indicating entanglement in the system is also presented. The system ground-state can be either in the superfluid phase or in the Mott insulator phase. The wave functions of atoms in the superfluid phase are delocalised over the whole lattice and overlap. In the Mott phase, the wave functions are localised around lattice sites. The GHZ state is being generated in the superfluid phase and stored in the Mott insulator phase. It is achieved by a linear change of the potential depth in an optical lattice filled with atoms of two species. The numerical method used to describe the system is based on the exact diagonalisation of the Bose-Hubbard Hamiltonian. A quantum correlator indicating the level of multi-mode entanglement is introduced. Finally, it is shown that the value of the correlator indicates generation of the GHZ state. The appearance of the GHZ state is confirmed by the numerical representation of the state.
- Publication:
-
arXiv e-prints
- Pub Date:
- March 2023
- DOI:
- arXiv:
- arXiv:2303.06913
- Bibcode:
- 2023arXiv230306913K
- Keywords:
-
- Quantum Physics;
- Condensed Matter - Quantum Gases