Dynamical formulation of ghost-free massive gravity
Abstract
We present a formulation of ghost-free massive gravity with flat reference metric that exhibits the full nonlinear constraint algebraically, in a way that can be directly implemented for numerical simulations. Motivated by the presence of higher order operators in the low-energy effective description of massive gravity, we show how the inclusion of higher-order gradient (dissipative) terms leads to a well-posed formulation of its dynamics. The formulation is presented for a generic combination of the minimal and quadratic mass terms (the phenomenologically interesting case) on any background. For concreteness, we then focus on the numerical evolution of the minimal model for spherically symmetric gravitational collapse of scalar field matter. This minimal model does not carry the relevant interactions to switch on an active Vainshtein mechanism, at least in spherical symmetry, thus we do not expect to recover usual general relativity behavior even for small graviton mass. Nonetheless we may ask what the outcome of matter collapse is for this gravitational theory. Starting with small initial data far away from the center, we follow the matter through a nonlinear regime as it falls towards the origin. For sufficiently weak data the matter disperses. However for larger data we generally find that the classical evolution breaks down resulting in the theory becoming infinitely strongly coupled without the presence of an apparent horizon shielding this behavior from an asymptotic observer.
- Publication:
-
Physical Review D
- Pub Date:
- October 2023
- DOI:
- arXiv:
- arXiv:2302.04876
- Bibcode:
- 2023PhRvD.108h4052D
- Keywords:
-
- High Energy Physics - Theory;
- General Relativity and Quantum Cosmology
- E-Print:
- 40 pages, 15 figures