Cosmic-ray driven galactic winds from the warm interstellar medium
Abstract
We study the properties of cosmic-ray (CR) driven galactic winds from the warm interstellar medium using idealized spherically symmetric time-dependent simulations. The key ingredients in the model are radiative cooling and CR-streaming-mediated heating of the gas. Cooling and CR heating balance near the base of the wind, but this equilibrium is thermally unstable, leading to a multiphase wind with large fluctuations in density and temperature. In most of our simulations, the heating eventually overwhelms cooling, leading to a rapid increase in temperature and a thermally driven wind; the exception to this is in galaxies with the shallowest potentials, which produce nearly isothermal $T \approx 10^4\,$ K winds driven by CR pressure. Many of the time-averaged wind solutions found here have a remarkable critical point structure, with two critical points. Scaled to real galaxies, we find mass outflow rates $\dot{M}$ somewhat larger than the observed star-formation rate in low-mass galaxies, and an approximately 'energy-like' scaling $\dot{M} \propto v_{\rm esc}^{-2}$. The winds accelerate slowly and reach asymptotic wind speeds of only ~0.4vesc. The total wind power is $\sim 1~{{\ \rm per\ cent}}$ of the power from supernovae, suggesting inefficient preventive CR feedback for the physical conditions modelled here. We predict significant spatially extended emission and absorption lines from 104-105.5 K gas; this may correspond to extraplanar diffuse ionized gas seen in star-forming galaxies.
- Publication:
-
Monthly Notices of the Royal Astronomical Society
- Pub Date:
- October 2023
- DOI:
- arXiv:
- arXiv:2302.03701
- Bibcode:
- 2023MNRAS.524.6374M
- Keywords:
-
- cosmic rays;
- galaxies: evolution;
- Astrophysics - Astrophysics of Galaxies;
- Astrophysics - High Energy Astrophysical Phenomena
- E-Print:
- Updated to accepted version: 19 pages, 14 figures. Main simulation results in Table 1, Figure 3, and Figure 7. Comments still welcome!