Leibniz Cohomology with Adjoint Coefficients
Abstract
With the Poincaré group $\mathbf{R}^{3,\,1}\rtimes O(3,\,1)$ as the model of departure, we focus, for $n=p+q$, $p+q\ge 4$, on the affine indefinite orthogonal group $\mathbf{R}^{p,q}\rtimes SO(p,\,q)$. Denote by $\mathfrak{h}_{p,\,q}$ the Lie algebra of the affine indefinite orthogonal group. We compute the Leibniz cohomology of $\mathfrak{h}_{p,\,q}$ with adjoint coefficients, written $HL^*(\mathfrak{h}_{p,\,q};\,\mathfrak{h}_{p,\,q})$. We calculate several indefinite orthogonal invariants, and $\mathfrak{h}_{p,\,q} $-invariants and provide the Leibniz cohomology in terms of these invariants.
- Publication:
-
arXiv e-prints
- Pub Date:
- February 2023
- DOI:
- arXiv:
- arXiv:2302.03234
- Bibcode:
- 2023arXiv230203234F
- Keywords:
-
- Mathematics - K-Theory and Homology;
- Mathematics - Algebraic Topology;
- 17B56;
- 17A32;
- 17B99