A note on commutators of singular integrals with ${\rm BMO}$ and ${\rm VMO}$ functions in the Dunkl setting
Abstract
On $\mathbb R^N$ equipped with a root system $R$, multiplicity function $k \geq 0$, and the associated measure $dw(\mathbf{x})=\prod_{\alpha \in R}|\langle \mathbf{x},\alpha\rangle|^{k(\alpha)}\,d\mathbf{x}$, we consider a (non-radial) kernel ${K}(\mathbf{x})$ which has properties similar to those from the classical theory of singular integrals and the Dunkl convolution operator $\mathbf{T}f=f*K$ associated with ${K}$. Assuming that $b$ belongs to the ${\rm BMO}$ space on the space of homogeneous type $X=(\mathbb{R}^N,\|\cdot\|,dw)$, we prove that the commutator $[b,\mathbf{T}]f(\mathbf{x})=b(\mathbf{x})\mathbf{T}f(\mathbf{x})-\mathbf{T}(bf)(\mathbf{x})$ is a bounded operator on $L^p(dw)$ for all $1<p<\infty$. Moreover, $[b,\mathbf T]$ is compact on $L^p(dw)$, provided $b\in {\rm VMO} (X)$. The paper extents results of Han, Lee, Li and Wick.
- Publication:
-
arXiv e-prints
- Pub Date:
- February 2023
- DOI:
- arXiv:
- arXiv:2302.00790
- Bibcode:
- 2023arXiv230200790D
- Keywords:
-
- Mathematics - Functional Analysis;
- 44A20;
- 42B20;
- 42B25;
- 47B38;
- 35K08;
- 33C52;
- 39A70
- E-Print:
- 15 pages. arXiv admin note: text overlap with arXiv:2211.02518