Density of rational points on diagonal bidegree $(1,2)$ hypersurface in $\mathbb{P}^{s-1} \times \mathbb{P}^{s-1}$
Abstract
In this paper we establish an asymptotic formula for the number of rational points of bounded anticanonical height which lie on a certain Zariski dense subset of the biprojective hypersurface \begin{align*} x_1y_1^2+...+x_sy_s^2 = 0 \end{align*} in $\mathbb{P}^{s-1} \times \mathbb{P}^{s-1} $ with $s \geq 7$. This confirms the Manin conjecture for this variety.
- Publication:
-
arXiv e-prints
- Pub Date:
- February 2023
- DOI:
- arXiv:
- arXiv:2302.00746
- Bibcode:
- 2023arXiv230200746W
- Keywords:
-
- Mathematics - Number Theory;
- Mathematics - Algebraic Geometry;
- 11D72;
- 11P55;
- 14G05
- E-Print:
- Added Appendix to address norm issues in Lemma 2.2