A counterexample on polynomial multiple convergence without commutativity
Abstract
It is shown that for polynomials $p_1, p_2 \in {\mathbb Z}[t]$ with ${\rm deg}\ p_1, {\rm deg}\ p_2\ge 5$ there exist a probability space $(X,{\mathcal X},\mu)$, two ergodic measure preserving transformations $T,S$ acting on $(X,{\mathcal X},\mu)$ with $h_\mu(X,T)=h_\mu(X,S)=0$, and $f, g \in L^\infty(X,\mu)$ such that the limit \begin{equation*} \lim_{N\to\infty}\frac{1}{N}\sum_{n=0}^{N-1} f(T^{p_1(n)}x)g(S^{p_2(n)}x) \end{equation*} does not exist in $L^2(X,\mu)$, which in some sense answers a question by Frantzikinakis and Host.
- Publication:
-
arXiv e-prints
- Pub Date:
- January 2023
- DOI:
- arXiv:
- arXiv:2301.12409
- Bibcode:
- 2023arXiv230112409H
- Keywords:
-
- Mathematics - Dynamical Systems;
- 37A05;
- 37A30
- E-Print:
- revised version according to referee's suggestion