X-Ray Studies of the Pulsar PSR J1420-6048 and Its TeV Pulsar Wind Nebula in the Kookaburra Region
Abstract
We present a detailed analysis of broadband X-ray observations of the pulsar PSR J1420-6048 and its wind nebula (PWN) in the Kookaburra region with Chandra, XMM-Newton, and NuSTAR. Using the archival XMM-Newton and new NuSTAR data, we detected 68 ms pulsations of the pulsar and characterized its X-ray pulse profile, which exhibits a sharp spike and a broad bump separated by ~0.5 in phase. A high-resolution Chandra image revealed a complex morphology of the PWN: a torus-jet structure, a few knots around the torus, one long (~7') and two short tails extending in the northwest direction, and a bright diffuse emission region to the south. Spatially integrated Chandra and NuSTAR spectra of the PWN out to 2.'5 are well-described by a power-law model with a photon index Γ ≈ 2. A spatially resolved spectroscopic study, as well as NuSTAR radial profiles of the 3-7 keV and 7-20 keV brightness, showed a hint of spectral softening with increasing distance from the pulsar. A multiwavelength spectral energy distribution (SED) of the source was then obtained by supplementing our X-ray measurements with published radio, Fermi-LAT, and H.E.S.S. data. The SED and radial variations of the X-ray spectrum were fit with a leptonic multizone emission model. Our detailed study of the PWN may be suggestive of (1) particle transport dominated by advection, (2) a low magnetic-field strength (B ~ 5 μG), and (3) electron acceleration to ~PeV energies.
- Publication:
-
The Astrophysical Journal
- Pub Date:
- March 2023
- DOI:
- arXiv:
- arXiv:2301.11549
- Bibcode:
- 2023ApJ...945...33P
- Keywords:
-
- Pulsar wind nebulae;
- Pulsars;
- Spectral energy distribution;
- High energy astrophysics;
- Gamma-ray sources;
- Radiative processes;
- X-ray astronomy;
- 2215;
- 1306;
- 2129;
- 739;
- 633;
- 2055;
- 1810;
- Astrophysics - High Energy Astrophysical Phenomena
- E-Print:
- 18 pages and 8 figures. Accepted for publication in Apj