Ultrasound Plane Pose Regression: Assessing Generalized Pose Coordinates in the Fetal Brain
Abstract
In obstetric ultrasound (US) scanning, the learner's ability to mentally build a three-dimensional (3D) map of the fetus from a two-dimensional (2D) US image represents a significant challenge in skill acquisition. We aim to build a US plane localization system for 3D visualization, training, and guidance without integrating additional sensors. This work builds on top of our previous work, which predicts the six-dimensional (6D) pose of arbitrarily oriented US planes slicing the fetal brain with respect to a normalized reference frame using a convolutional neural network (CNN) regression network. Here, we analyze in detail the assumptions of the normalized fetal brain reference frame and quantify its accuracy with respect to the acquisition of transventricular (TV) standard plane (SP) for fetal biometry. We investigate the impact of registration quality in the training and testing data and its subsequent effect on trained models. Finally, we introduce data augmentations and larger training sets that improve the results of our previous work, achieving median errors of 2.97 mm and 6.63 degrees for translation and rotation, respectively.
- Publication:
-
IEEE Transactions on Medical Robotics and Bionics
- Pub Date:
- February 2024
- DOI:
- arXiv:
- arXiv:2301.08317
- Bibcode:
- 2024ITMRB...6...41D
- Keywords:
-
- Computer Science - Computer Vision and Pattern Recognition;
- Computer Science - Artificial Intelligence;
- 68T07;
- I.2.0;
- I.4.0;
- J.2;
- J.3
- E-Print:
- 13 pages, 9 figures, 2 tables. This article has been accepted for publication in IEEE Transactions on Medical Robotics and Bionics. This is the author's version which has not been fully edited and content may change prior to final publication. This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/