Learning Regularization Parameter-Maps for Variational Image Reconstruction using Deep Neural Networks and Algorithm Unrolling
Abstract
We introduce a method for fast estimation of data-adapted, spatio-temporally dependent regularization parameter-maps for variational image reconstruction, focusing on total variation (TV)-minimization. Our approach is inspired by recent developments in algorithm unrolling using deep neural networks (NNs), and relies on two distinct sub-networks. The first sub-network estimates the regularization parameter-map from the input data. The second sub-network unrolls $T$ iterations of an iterative algorithm which approximately solves the corresponding TV-minimization problem incorporating the previously estimated regularization parameter-map. The overall network is trained end-to-end in a supervised learning fashion using pairs of clean-corrupted data but crucially without the need of having access to labels for the optimal regularization parameter-maps. We prove consistency of the unrolled scheme by showing that the unrolled energy functional used for the supervised learning $\Gamma$-converges as $T$ tends to infinity, to the corresponding functional that incorporates the exact solution map of the TV-minimization problem. We apply and evaluate our method on a variety of large scale and dynamic imaging problems in which the automatic computation of such parameters has been so far challenging: 2D dynamic cardiac MRI reconstruction, quantitative brain MRI reconstruction, low-dose CT and dynamic image denoising. The proposed method consistently improves the TV-reconstructions using scalar parameters and the obtained parameter-maps adapt well to each imaging problem and data by leading to the preservation of detailed features. Although the choice of the regularization parameter-maps is data-driven and based on NNs, the proposed algorithm is entirely interpretable since it inherits the properties of the respective iterative reconstruction method from which the network is implicitly defined.
- Publication:
-
arXiv e-prints
- Pub Date:
- January 2023
- DOI:
- arXiv:
- arXiv:2301.05888
- Bibcode:
- 2023arXiv230105888K
- Keywords:
-
- Mathematics - Optimization and Control
- E-Print:
- 48 pages