Saturation Numbers for Berge Cliques
Abstract
Let $F$ be a graph and $\mathcal{H}$ be a hypergraph, both embedded on the same vertex set. We say $\mathcal{H}$ is a Berge-$F$ if there exists a bijection $\phi:E(F)\to E(\mathcal{H})$ such that $e\subseteq \phi(e)$ for all $e\in E(F)$. We say $\mathcal{H}$ is Berge-$F$-saturated if $\mathcal{H}$ does not contain any Berge-$F$, but adding any missing edge to $\mathcal{H}$ creates a copy of a Berge-$F$. The saturation number $\mathrm{sat}_k(n,\text{Berge-}F)$ is the least number of edges in a Berge-$F$-saturated $k$-uniform hypergraph on $n$ vertices. We show \[ \mathrm{sat}_k(n,\text{Berge-}K_\ell)\sim \frac{\ell-2}{k-1}n, \] for all $k,\ell\geq 3$. Furthermore, we provide some sufficient conditions to imply that $\mathrm{sat}_k(n,\text{Berge-}F)=O(n)$ for general graphs $F$.
- Publication:
-
arXiv e-prints
- Pub Date:
- January 2023
- DOI:
- 10.48550/arXiv.2301.02973
- arXiv:
- arXiv:2301.02973
- Bibcode:
- 2023arXiv230102973E
- Keywords:
-
- Mathematics - Combinatorics;
- 05C35
- E-Print:
- 16 pages, 1 figure