Primary Decompositions of Regular Sequences
Abstract
Let $R$ be a Noetherian ring and $x_1,\ldots,x_t$ a permutable regular sequence of elements in $R$. Then there exists a finite set of primes $\Lambda$ and natural number $C$ so that for all $n_1,\ldots,n_t$ there exists a primary decomposition $(x_1^{n_1},\ldots,x_t^{n_t})=Q_1\cap \cdots \cap Q_\ell$ so that $\sqrt{Q_i}\in \Lambda$ and $\sqrt{Q_i}^{C(n_1+\cdots + n_t)}\subseteq Q_i$ for all $1\leq i\leq \ell$.
- Publication:
-
arXiv e-prints
- Pub Date:
- January 2023
- DOI:
- arXiv:
- arXiv:2301.02285
- Bibcode:
- 2023arXiv230102285P
- Keywords:
-
- Mathematics - Commutative Algebra
- E-Print:
- Comments welcome