Martingale Type, the Gamlen-Gaudet Construction and a Greedy Algorithm
Abstract
In the present paper we identify those filtered probability spaces $(\Omega,\, \mathcal{F},\, \left(\mathcal{F}_n\right),\, \mathbb{P})$ that determine already the martingale type of a Banach space $X$. We isolate intrinsic conditions on the filtration $(\mathcal{F}_n)$ of purely atomic $\sigma$-algebras which determine that the upper $\ell^p$ estimates \[ \|f\|_{L^p(\Omega,\, X)}^p\leq C^p\left( \|\mathbb{E} f|\mathcal{F}_0\|^p_{L^p(\Omega,\, X)}+\sum_{n=1}^{\infty} \|\Delta_n f\|^p_{L^p(\Omega,\, X)}\right),\qquad f\in L^p(\Omega,X)\] imply that the Banach space $X$ is of martingale type $p$. Our paper complements \mbox{G. Pisier's} investigation \cite{Pisier1975} and continues the work by S. Geiss and second named author in \cite{Geiss2008}.
- Publication:
-
arXiv e-prints
- Pub Date:
- December 2022
- DOI:
- 10.48550/arXiv.2212.07804
- arXiv:
- arXiv:2212.07804
- Bibcode:
- 2022arXiv221207804K
- Keywords:
-
- Mathematics - Functional Analysis;
- 2020: 46B20;
- 46B09;
- 46B07
- E-Print:
- We added: References, additional explanations, improvements. We remove typos and misprints