Revisiting the acceleration phenomenon via high-resolution differential equations
Abstract
Nesterov's accelerated gradient descent (NAG) is one of the milestones in the history of first-order algorithms. It was not successfully uncovered until the high-resolution differential equation framework was proposed in [Shi et al., 2022] that the mechanism behind the acceleration phenomenon is due to the gradient correction term. To deepen our understanding of the high-resolution differential equation framework on the convergence rate, we continue to investigate NAG for the $\mu$-strongly convex function based on the techniques of Lyapunov analysis and phase-space representation in this paper. First, we revisit the proof from the gradient-correction scheme. Similar to [Chen et al., 2022], the straightforward calculation simplifies the proof extremely and enlarges the step size to $s=1/L$ with minor modification. Meanwhile, the way of constructing Lyapunov functions is principled. Furthermore, we also investigate NAG from the implicit-velocity scheme. Due to the difference in the velocity iterates, we find that the Lyapunov function is constructed from the implicit-velocity scheme without the additional term and the calculation of iterative difference becomes simpler. Together with the optimal step size obtained, the high-resolution differential equation framework from the implicit-velocity scheme of NAG is perfect and outperforms the gradient-correction scheme.
- Publication:
-
arXiv e-prints
- Pub Date:
- December 2022
- DOI:
- arXiv:
- arXiv:2212.05700
- Bibcode:
- 2022arXiv221205700C
- Keywords:
-
- Mathematics - Optimization and Control;
- Computer Science - Machine Learning;
- Mathematics - Numerical Analysis
- E-Print:
- 17 pages