Hutchinson's intervals and entire functions from the Laguerre-Pólya class
Abstract
We find the intervals $[\alpha, \beta (\alpha)]$ such that if a univariate real polynomial or entire function $f(z) = a_0 + a_1 z + a_2 z^2 + \cdots $ with positive coefficients satisfy the conditions $ \frac{a_{k-1}^2}{a_{k-2}a_{k}} \in [\alpha, \beta(\alpha)]$ for all $k \geq 2,$ then $f$ belongs to the Laguerre--Pólya class. For instance, from J.I.~Hutchinson's theorem, one can observe that $f$ belongs to the Laguerre--Pólya class (has only real zeros) when $q_k(f) \in [4, + \infty).$ We are interested in finding those intervals which are not subsets of $[4, + \infty).$
- Publication:
-
arXiv e-prints
- Pub Date:
- December 2022
- DOI:
- arXiv:
- arXiv:2212.05692
- Bibcode:
- 2022arXiv221205692H
- Keywords:
-
- Mathematics - Complex Variables;
- 30C15;
- 30D15;
- 30D35;
- 26C10
- E-Print:
- 10 pages