On a sum of a multiplicative function linked to the divisor function over the set of integers B-multiple of 5
Abstract
Let $d(n)$ and $d^{\ast}(n)$ be the numbers of divisors and the numbers of unitary divisors of the integer $n\geq1$. In this paper, we prove that \[ \underset{n\in\mathcal{B}}{\underset{n\leq x}{\sum}}\frac{d(n)}{d^{\ast}% (n)}=\frac{16\pi% %TCIMACRO{\U{b2}}% %BeginExpansion {{}^2}% %EndExpansion }{123}\underset{p}{\prod}(1-\frac{1}{2p% %TCIMACRO{\U{b2}}% %BeginExpansion {{}^2}% %EndExpansion }+\frac{1}{2p^{3}})x+\mathcal{O}\left( x^{\frac{\ln8}{\ln10}+\varepsilon }\right) ,~\left( x\geqslant1,~\varepsilon>0\right) , \] where $\mathcal{B}$ is the set which contains any integer that is not a multiple of $5,$ but some permutations of its digits is a multiple of $5.$
- Publication:
-
arXiv e-prints
- Pub Date:
- December 2022
- DOI:
- arXiv:
- arXiv:2212.05549
- Bibcode:
- 2022arXiv221205549B
- Keywords:
-
- Mathematics - Number Theory;
- 11A25;
- 11N37
- E-Print:
- 7pages