The Smith normal form of the walk matrix of the Dynkin graph $D_n$ for $n\equiv 0\pmod{4}$
Abstract
Let $W(D_n)$ denote the walk matrix of the Dynkin graph $D_n$. We prove that the Smith normal form of $W(D_n)$ is $$\textup{diag}[\underbrace{1,1,\ldots,1}_{\frac{n}{2}-1},\underbrace{2,2,\ldots,2}_{\frac{n}{2}-1},0,0]$$ when $n\equiv 0\pmod{4}$. This gives an affirmative answer to a question in [W. Wang, C. Wang, S. Guo, On the walk matrix of the Dynkin graph $D_n$, Linear Algebra Appl. 653 (2022) 193--206].
- Publication:
-
arXiv e-prints
- Pub Date:
- December 2022
- DOI:
- arXiv:
- arXiv:2212.05456
- Bibcode:
- 2022arXiv221205456W
- Keywords:
-
- Mathematics - Combinatorics;
- 05C50
- E-Print:
- 12 pages,1 figure