Hyperbolic Summation for Fractional Sums
Abstract
Let $f(n)$ be an arithmetic function with $f(n) \ll n^\alpha$ for some $\alpha\in[0,1)$ and let $\lfloor .\rfloor $ denote the integer part function. In this paper, we evaluate asymptotically the sums $$\sum_{n_{1}n_{2}\leq x}f \left( \left\lfloor \frac{x}{n_{1}n_{2}} \right\rfloor \right),$$ we use the estimation of three-dimensional exponential sums due to Robert and Sargos.
- Publication:
-
arXiv e-prints
- Pub Date:
- December 2022
- DOI:
- arXiv:
- arXiv:2212.05443
- Bibcode:
- 2022arXiv221205443K
- Keywords:
-
- Mathematics - Number Theory;
- 11A25;
- 11L07;
- 11N37
- E-Print:
- All remarks are welcome