Computing linear sections of varieties: quantum entanglement, tensor decompositions and beyond
Abstract
We study the problem of finding elements in the intersection of an arbitrary conic variety in $\mathbb{F}^n$ with a given linear subspace (where $\mathbb{F}$ can be the real or complex field). This problem captures a rich family of algorithmic problems under different choices of the variety. The special case of the variety consisting of rank-1 matrices already has strong connections to central problems in different areas like quantum information theory and tensor decompositions. This problem is known to be NP-hard in the worst case, even for the variety of rank-1 matrices. Surprisingly, despite these hardness results we develop an algorithm that solves this problem efficiently for "typical" subspaces. Here, the subspace $U \subseteq \mathbb{F}^n$ is chosen generically of a certain dimension, potentially with some generic elements of the variety contained in it. Our main result is a guarantee that our algorithm recovers all the elements of $U$ that lie in the variety, under some mild non-degeneracy assumptions on the variety. As corollaries, we obtain the following new results: $\bullet$ Polynomial time algorithms for several entangled subspaces problems in quantum entanglement, including determining r-entanglement, complete entanglement, and genuine entanglement of a subspace. While all of these problems are NP-hard in the worst case, our algorithm solves them in polynomial time for generic subspaces of dimension up to a constant multiple of the maximum possible. $\bullet$ Uniqueness results and polynomial time algorithmic guarantees for generic instances of a broad class of low-rank decomposition problems that go beyond tensor decompositions. Here, we recover a decomposition of the form $\sum_{i=1}^R v_i \otimes w_i$, where the $v_i$ are elements of the variety $X$. This implies new uniqueness results and genericity guarantees even in the special case of tensor decompositions.
- Publication:
-
arXiv e-prints
- Pub Date:
- December 2022
- DOI:
- 10.48550/arXiv.2212.03851
- arXiv:
- arXiv:2212.03851
- Bibcode:
- 2022arXiv221203851J
- Keywords:
-
- Computer Science - Data Structures and Algorithms;
- Computer Science - Machine Learning;
- Mathematics - Algebraic Geometry;
- Quantum Physics
- E-Print:
- 39 pages. V3: Simplified some arguments and notation. Comments welcome!