Towards Human-Interpretable Prototypes for Visual Assessment of Image Classification Models
Abstract
Explaining black-box Artificial Intelligence (AI) models is a cornerstone for trustworthy AI and a prerequisite for its use in safety critical applications such that AI models can reliably assist humans in critical decisions. However, instead of trying to explain our models post-hoc, we need models which are interpretable-by-design built on a reasoning process similar to humans that exploits meaningful high-level concepts such as shapes, texture or object parts. Learning such concepts is often hindered by its need for explicit specification and annotation up front. Instead, prototype-based learning approaches such as ProtoPNet claim to discover visually meaningful prototypes in an unsupervised way. In this work, we propose a set of properties that those prototypes have to fulfill to enable human analysis, e.g. as part of a reliable model assessment case, and analyse such existing methods in the light of these properties. Given a 'Guess who?' game, we find that these prototypes still have a long way ahead towards definite explanations. We quantitatively validate our findings by conducting a user study indicating that many of the learnt prototypes are not considered useful towards human understanding. We discuss about the missing links in the existing methods and present a potential real-world application motivating the need to progress towards truly human-interpretable prototypes.
- Publication:
-
arXiv e-prints
- Pub Date:
- November 2022
- DOI:
- arXiv:
- arXiv:2211.12173
- Bibcode:
- 2022arXiv221112173S
- Keywords:
-
- Computer Science - Computer Vision and Pattern Recognition;
- Computer Science - Machine Learning
- E-Print:
- Proceedings of the 18th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 5: VISAPP, 878-887, 2023