A greedy randomized average block projection method for linear feasibility problems
Abstract
The randomized projection (RP) method is a simple iterative scheme for solving linear feasibility problems and has recently gained popularity due to its speed and low memory requirement. This paper develops an accelerated variant of the standard RP method by using two ingredients: the greedy probability criterion and the average block approach, and obtains a greedy randomized average block projection (GRABP) method for solving large-scale systems of linear inequalities. We prove that this method converges linearly in expectation under different choices of extrapolated stepsizes. Numerical experiments on both randomly generated and real-world data show the advantage of GRABP over several state-of-the-art solvers, such as the randomized projection (RP) method, the sampling Kaczmarz Motzkin (SKM) method, the generalized SKM (GSKM) method, and the Nesterov acceleration of SKM method.
- Publication:
-
arXiv e-prints
- Pub Date:
- November 2022
- DOI:
- arXiv:
- arXiv:2211.10331
- Bibcode:
- 2022arXiv221110331Z
- Keywords:
-
- Mathematics - Optimization and Control;
- Mathematics - Numerical Analysis
- E-Print:
- 21 pages