Incremental Approximate Maximum Flow in $m^{1/2+o(1)}$ update time
Abstract
We show an $(1+\epsilon)$-approximation algorithm for maintaining maximum $s$-$t$ flow under $m$ edge insertions in $m^{1/2+o(1)} \epsilon^{-1/2}$ amortized update time for directed, unweighted graphs. This constitutes the first sublinear dynamic maximum flow algorithm in general sparse graphs with arbitrarily good approximation guarantee.
- Publication:
-
arXiv e-prints
- Pub Date:
- November 2022
- DOI:
- arXiv:
- arXiv:2211.09606
- Bibcode:
- 2022arXiv221109606G
- Keywords:
-
- Computer Science - Data Structures and Algorithms