Secure SWIPT in the Multiuser STAR-RIS Aided MISO Rate Splitting Downlink
Abstract
Recently, simultaneously transmitting and reflecting reconfigurable intelligent surfaces (STAR-RISs) have emerged as a novel technology that provides 360 coverage and new degrees-of-freedom (DoFs). They are also capable of manipulating signal propagation and simultaneous wireless information and power transfer (SWIPT). This paper introduces a novel STAR-RIS-aided secure SWIPT system for downlink multiple input single output rate-splitting multiple access (RSMA) networks. The transmitter concurrently communicates with the information receivers (IRs) and sends energy to untrusted energy receivers (UERs). The UERs are also capable of wiretapping the IR streams. We assume that the channel state information (CSI) of the IRs is known at the information transmitter, but only imperfect CSI for the UERs is available at the energy transmitter. By exploiting RSMA, the base station splits the messages of the IRs into common and private parts. The former is encoded into a common stream that can be decoded by all IRs, while the private messages are individually decoded by their respective IRs. We find the precoders and STAR-RIS configuration that maximizes the achievable worst-case sum secrecy rate of the IRs under a total transmit power constraint, a sum energy constraint for the UERs, and subject to constraints on the transmission and reflection coefficients. The formulated problem is non-convex and has intricately coupled variables. To tackle this challenge, a suboptimal two-step iterative algorithm based on the sequential parametric convex approximation method is proposed. Simulations demonstrate that the RSMA-based algorithm implemented with a STAR-RIS enhances both the rate of confidential information transmission and the total spectral efficiency. Furthermore, our method surpasses the performance of both orthogonal multiple access (OMA) and non-OMA (NOMA).
- Publication:
-
arXiv e-prints
- Pub Date:
- November 2022
- DOI:
- arXiv:
- arXiv:2211.09081
- Bibcode:
- 2022arXiv221109081H
- Keywords:
-
- Computer Science - Information Theory;
- Electrical Engineering and Systems Science - Signal Processing
- E-Print:
- 16 pages, journal paper