Synthesis of thorium and uranium in asymptotic giant branch stars
Abstract
Context. The intermediate neutron capture process (i-process) operates at neutron densities between those of the slow and rapid neutron-capture processes. It is believed to be triggered by the ingestion of protons in a convective helium-burning region. One possible astrophysical site is low-mass low-metallicity asymptotic giant branch (AGB) stars.
Aims: Although it has been widely believed that actinides, and most particularly Th and U, are exclusively produced by explosive r-process nucleosynthesis, we study here the possibility that actinides may also be significantly synthesized through i-process nucleosynthesis in AGB stars.
Methods: We computed a 1 M⊙ model at [Fe/H] = −2.5 with the stellar evolution code STAREVOL. We used a nuclear network of 1160 species from H to Cf coupled to the transport processes. Models of various resolutions (temporal and spatial) that use different nuclear datasets are also considered for the analysis.
Results: During the proton ingestion event, the neutron density in our AGB model goes up to ∼1015 cm−3 and is shown to be high enough to give rise to the production of actinides. While most of the nuclear flow cycles in the neutron-rich Pb-Bi-Po region, a non-negligible fraction leaks towards heavier elements and eventually synthesizes actinides. The surface enrichment in Th and U is subject to nuclear and astrophysical model uncertainties that could be lowered in the future, in particular by a detailed analysis of the nuclear inputs that affect the neutron capture rates of neutron-rich isotopes between Pb and Pa, along the i-process path. One stellar candidate that may confirm the production of actinides by the i-process is the carbon-enhanced metal-poor (CEMP) r/s star
Conclusions: We show that actinides can be synthesized in low-metallicity low-mass AGB stars through the i-process. This astrophysical site therefore potentially contributes to the Galactic enrichment of Th and U, which demonstrates that the r-process may not be the sole mechanism for the production of U and Th.
- Publication:
-
Astronomy and Astrophysics
- Pub Date:
- November 2022
- DOI:
- arXiv:
- arXiv:2211.03824
- Bibcode:
- 2022A&A...667L..13C
- Keywords:
-
- nuclear reactions;
- nucleosynthesis;
- abundances;
- stars: AGB and post-AGB;
- Astrophysics - Solar and Stellar Astrophysics
- E-Print:
- 6 pages, 3 figures, accepted in A&