A Comparative Study On Solving Optimization Problems With Exponentially Fewer Qubits
Abstract
Variational Quantum optimization algorithms, such as the Variational Quantum Eigensolver (VQE) or the Quantum Approximate Optimization Algorithm (QAOA), are among the most studied quantum algorithms. In our work, we evaluate and improve an algorithm based on VQE, which uses exponentially fewer qubits compared to the QAOA. We highlight the numerical instabilities generated by encoding the problem into the variational ansatz and propose a classical optimization procedure to find the ground-state of the ansatz in less iterations with a better or similar objective. Furthermore, we compare classical optimizers for this variational ansatz on quadratic unconstrained binary optimization and graph partitioning problems.
- Publication:
-
arXiv e-prints
- Pub Date:
- October 2022
- DOI:
- 10.48550/arXiv.2210.11823
- arXiv:
- arXiv:2210.11823
- Bibcode:
- 2022arXiv221011823W
- Keywords:
-
- Quantum Physics
- E-Print:
- Accepted at QTML2022