Radiation pressure-driven outflows from dusty AGN
Abstract
Radiation pressure-driven outflows from luminous accreting supermassive black holes are an important part of active galactic nucleus (AGN) feedback. The effective Eddington limit, based on absorption of radiation by dust, not electron scattering, is revealed in the plane of AGN absorption column density NH as a function of Eddington fraction λEdd = Lbol/LEdd, where a lack of objects is seen in the region where the effective limit is exceeded. Here, we conduct radiation simulation using the CLOUDY code to deduce the radiative force applied on to dusty gas at the nucleus and compare to the gravitational force to reveal the outflow region and its boundary with long-lived absorption clouds. We also investigate how the outflow condition is affected by various AGN and dust properties and distribution. As expected, the dust abundance has the largest effect on the NH-λEdd diagram since the higher the abundance, the more effective the radiative feedback, while the impact of the inner radius of the dusty gas shell, the shell width, and the AGN spectral shape are relatively negligible. The presence of other central masses, such as a nuclear star cluster, can also make the feedback less effective. The AGN spectral energy distribution depends on the mass of the black hole and its spin. Though the effects of the AGN spectral energy distribution on the diagram are relatively small, the fraction of ionizing ultraviolet photons from the blackbody accretion disc is affected more by black hole mass than spin, and can influence the efficiency of radiation pressure.
- Publication:
-
Monthly Notices of the Royal Astronomical Society
- Pub Date:
- December 2022
- DOI:
- arXiv:
- arXiv:2210.10598
- Bibcode:
- 2022MNRAS.517.5069A
- Keywords:
-
- black hole physics;
- radiative transfer;
- galaxies: active;
- galaxies: evolution;
- galaxies: ISM;
- Astrophysics - Astrophysics of Galaxies;
- Astrophysics - High Energy Astrophysical Phenomena
- E-Print:
- Accepted for publication in MNRAS