Maximum Likelihood-Based Gridless DoA Estimation Using Structured Covariance Matrix Recovery and SBL With Grid Refinement
Abstract
We consider the parametric data model employed in applications such as line spectral estimation and direction-of-arrival estimation. We focus on the stochastic maximum likelihood estimation (MLE) framework and offer approaches to estimate the parameter of interest in a gridless manner, overcoming the model complexities of the past. This progress is enabled by the modern trend of reparameterization of the objective and exploiting the sparse Bayesian learning (SBL) approach. The latter is shown to be a correlation-aware method, and for the underlying problem it is identified as a grid-based technique for recovering a structured covariance matrix of the measurements. For the case when the structured matrix is expressible as a sampled Toeplitz matrix, such as when measurements are sampled in time or space at regular intervals, additional constraints and reparameterization of the SBL objective leads to the proposed structured matrix recovery technique based on MLE. The proposed optimization problem is non-convex, and we propose a majorization-minimization based iterative procedure to estimate the structured matrix; each iteration solves a semidefinite program. We recover the parameter of interest in a gridless manner by appealing to the Caratheodory-Fejer result on decomposition of PSD Toeplitz matrices. For the general case of irregularly spaced time or spatial samples, we propose an iterative SBL procedure that refines grid points to increase resolution near potential source locations, while maintaining a low per iteration complexity. We provide numerical results to evaluate and compare the performance of the proposed techniques with other gridless techniques, and the CRB. The proposed correlation-aware approach is more robust to environmental/system effects such as low number of snapshots, correlated sources, small separation between source locations and improves sources identifiability.
- Publication:
-
IEEE Transactions on Signal Processing
- Pub Date:
- 2023
- DOI:
- arXiv:
- arXiv:2210.03266
- Bibcode:
- 2023ITSP...71..802P
- Keywords:
-
- Electrical Engineering and Systems Science - Signal Processing;
- Computer Science - Information Theory
- E-Print:
- Submitted to the IEEE Transactions on Signal Processing (Previous submission date: 29-Oct-2021)