Congruences on the class numbers of $\mathbb{Q}(\sqrt{\pm 2p})$ for $p\equiv3$ $(\text{mod }4)$ a prime
Abstract
For a prime $p\equiv 3$ $(\text{mod }4)$, let $h(-8p)$ and $h(8p)$ be the class numbers of $\mathbb{Q}(\sqrt{-2p})$ and $\mathbb{Q}(\sqrt{2p})$, respectively. Let $\Psi(\xi)$ be the Hirzebruch sum of a quadratic irrational $\xi$. We show that $h(-8p)\equiv h(8p)\Big(\Psi(2\sqrt{2p})/3-\Psi\big((1+\sqrt{2p})/2\big)/3\Big)$ $(\text{mod }16)$. Also, we show that $h(-8p)\equiv 2h(8p)\Psi(2\sqrt{2p})/3$ $(\text{mod }8)$ if $p\equiv 3$ $(\text{mod }8)$, and $h(-8p)\equiv \big(2h(8p)\Psi(2\sqrt{2p})/3\big)+4$ $(\text{mod }8)$ if $p\equiv 7$ $(\text{mod }8)$.
- Publication:
-
arXiv e-prints
- Pub Date:
- October 2022
- DOI:
- arXiv:
- arXiv:2210.02668
- Bibcode:
- 2022arXiv221002668K
- Keywords:
-
- Mathematics - Number Theory;
- 11R29 (Primary) 11A55;
- 11F20 (Secondary)
- E-Print:
- 16 pages