Automated ischemic stroke lesion segmentation from 3D MRI
Abstract
Ischemic Stroke Lesion Segmentation challenge (ISLES 2022) offers a platform for researchers to compare their solutions to 3D segmentation of ischemic stroke regions from 3D MRIs. In this work, we describe our solution to ISLES 2022 segmentation task. We re-sample all images to a common resolution, use two input MRI modalities (DWI and ADC) and train SegResNet semantic segmentation network from MONAI. The final submission is an ensemble of 15 models (from 3 runs of 5-fold cross validation). Our solution (team name NVAUTO) achieves the top place in terms of Dice metric (0.824), and overall rank 2 (based on the combined metric ranking).
- Publication:
-
arXiv e-prints
- Pub Date:
- September 2022
- DOI:
- arXiv:
- arXiv:2209.09546
- Bibcode:
- 2022arXiv220909546M
- Keywords:
-
- Electrical Engineering and Systems Science - Image and Video Processing;
- Computer Science - Computer Vision and Pattern Recognition
- E-Print:
- ISLES22 challenge report, MICCAI2022